Enter a problem...
Linear Algebra Examples
4r+7s=234r+7s=23 , r-2s=17r−2s=17
Step 1
Find the AX=BAX=B from the system of equations.
[471-2]⋅[rs]=[2317][471−2]⋅[rs]=[2317]
Step 2
Step 2.1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 2.2
Find the determinant.
Step 2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
4⋅-2-1⋅74⋅−2−1⋅7
Step 2.2.2
Simplify the determinant.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 44 by -2−2.
-8-1⋅7−8−1⋅7
Step 2.2.2.1.2
Multiply -1−1 by 77.
-8-7−8−7
-8-7−8−7
Step 2.2.2.2
Subtract 77 from -8−8.
-15−15
-15−15
-15−15
Step 2.3
Since the determinant is non-zero, the inverse exists.
Step 2.4
Substitute the known values into the formula for the inverse.
1-15[-2-7-14]1−15[−2−7−14]
Step 2.5
Move the negative in front of the fraction.
-115[-2-7-14]−115[−2−7−14]
Step 2.6
Multiply -115−115 by each element of the matrix.
[-115⋅-2-115⋅-7-115⋅-1-115⋅4][−115⋅−2−115⋅−7−115⋅−1−115⋅4]
Step 2.7
Simplify each element in the matrix.
Step 2.7.1
Multiply -115⋅-2−115⋅−2.
Step 2.7.1.1
Multiply -2−2 by -1−1.
[2(115)-115⋅-7-115⋅-1-115⋅4]⎡⎢⎣2(115)−115⋅−7−115⋅−1−115⋅4⎤⎥⎦
Step 2.7.1.2
Combine 22 and 115115.
[215-115⋅-7-115⋅-1-115⋅4][215−115⋅−7−115⋅−1−115⋅4]
[215-115⋅-7-115⋅-1-115⋅4][215−115⋅−7−115⋅−1−115⋅4]
Step 2.7.2
Multiply -115⋅-7−115⋅−7.
Step 2.7.2.1
Multiply -7−7 by -1−1.
[2157(115)-115⋅-1-115⋅4]⎡⎢⎣2157(115)−115⋅−1−115⋅4⎤⎥⎦
Step 2.7.2.2
Combine 77 and 115115.
[215715-115⋅-1-115⋅4][215715−115⋅−1−115⋅4]
[215715-115⋅-1-115⋅4][215715−115⋅−1−115⋅4]
Step 2.7.3
Multiply -115⋅-1−115⋅−1.
Step 2.7.3.1
Multiply -1−1 by -1−1.
[2157151(115)-115⋅4]⎡⎢⎣2157151(115)−115⋅4⎤⎥⎦
Step 2.7.3.2
Multiply 115115 by 11.
[215715115-115⋅4][215715115−115⋅4]
[215715115-115⋅4][215715115−115⋅4]
Step 2.7.4
Multiply -115⋅4−115⋅4.
Step 2.7.4.1
Multiply 44 by -1−1.
[215715115-4(115)]⎡⎢⎣215715115−4(115)⎤⎥⎦
Step 2.7.4.2
Combine -4−4 and 115115.
[215715115-415][215715115−415]
[215715115-415][215715115−415]
Step 2.7.5
Move the negative in front of the fraction.
[215715115-415][215715115−415]
[215715115-415][215715115−415]
[215715115-415][215715115−415]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([215715115-415]⋅[471-2])⋅[rs]=[215715115-415]⋅[2317]([215715115−415]⋅[471−2])⋅[rs]=[215715115−415]⋅[2317]
Step 4
Any matrix multiplied by its inverse is equal to 11 all the time. A⋅A-1=1A⋅A−1=1.
[rs]=[215715115-415]⋅[2317][rs]=[215715115−415]⋅[2317]
Step 5
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×22×2 and the second matrix is 2×12×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[215⋅23+715⋅17115⋅23-415⋅17][215⋅23+715⋅17115⋅23−415⋅17]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[11-3][11−3]
[11-3][11−3]
Step 6
Simplify the left and right side.
[rs]=[11-3][rs]=[11−3]
Step 7
Find the solution.
r=11r=11
s=-3s=−3