Linear Algebra Examples

Solve Using an Inverse Matrix 4r+7s=23 , r-2s=17
4r+7s=234r+7s=23 , r-2s=17r2s=17
Step 1
Find the AX=BAX=B from the system of equations.
[471-2][rs]=[2317][4712][rs]=[2317]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
Step 2.1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1adbc[dbca] where ad-bcadbc is the determinant.
Step 2.2
Find the determinant.
Tap for more steps...
Step 2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
4-2-174217
Step 2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Multiply 44 by -22.
-8-17817
Step 2.2.2.1.2
Multiply -11 by 77.
-8-787
-8-787
Step 2.2.2.2
Subtract 77 from -88.
-1515
-1515
-1515
Step 2.3
Since the determinant is non-zero, the inverse exists.
Step 2.4
Substitute the known values into the formula for the inverse.
1-15[-2-7-14]115[2714]
Step 2.5
Move the negative in front of the fraction.
-115[-2-7-14]115[2714]
Step 2.6
Multiply -115115 by each element of the matrix.
[-115-2-115-7-115-1-1154][1152115711511154]
Step 2.7
Simplify each element in the matrix.
Tap for more steps...
Step 2.7.1
Multiply -115-21152.
Tap for more steps...
Step 2.7.1.1
Multiply -22 by -11.
[2(115)-115-7-115-1-1154]2(115)115711511154
Step 2.7.1.2
Combine 22 and 115115.
[215-115-7-115-1-1154][215115711511154]
[215-115-7-115-1-1154][215115711511154]
Step 2.7.2
Multiply -115-71157.
Tap for more steps...
Step 2.7.2.1
Multiply -77 by -11.
[2157(115)-115-1-1154]2157(115)11511154
Step 2.7.2.2
Combine 77 and 115115.
[215715-115-1-1154][21571511511154]
[215715-115-1-1154][21571511511154]
Step 2.7.3
Multiply -115-11151.
Tap for more steps...
Step 2.7.3.1
Multiply -11 by -11.
[2157151(115)-1154]2157151(115)1154
Step 2.7.3.2
Multiply 115115 by 11.
[215715115-1154][2157151151154]
[215715115-1154][2157151151154]
Step 2.7.4
Multiply -11541154.
Tap for more steps...
Step 2.7.4.1
Multiply 44 by -11.
[215715115-4(115)]2157151154(115)
Step 2.7.4.2
Combine -44 and 115115.
[215715115-415][215715115415]
[215715115-415][215715115415]
Step 2.7.5
Move the negative in front of the fraction.
[215715115-415][215715115415]
[215715115-415][215715115415]
[215715115-415][215715115415]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([215715115-415][471-2])[rs]=[215715115-415][2317]([215715115415][4712])[rs]=[215715115415][2317]
Step 4
Any matrix multiplied by its inverse is equal to 11 all the time. AA-1=1AA1=1.
[rs]=[215715115-415][2317][rs]=[215715115415][2317]
Step 5
Multiply [215715115-415][2317][215715115415][2317].
Tap for more steps...
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×22×2 and the second matrix is 2×12×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[21523+7151711523-41517][21523+715171152341517]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[11-3][113]
[11-3][113]
Step 6
Simplify the left and right side.
[rs]=[11-3][rs]=[113]
Step 7
Find the solution.
r=11r=11
s=-3s=3
 [x2  12  π  xdx ]  x2  12  π  xdx